

IT Ruby SDK Family Tree
It has been mentioned to me at various times that our Ruby code base is difficult to contribute to when
you don’t know where to start, or how the pieces fit together. This document hopes to describe the
logic of the codebase layout, deconstruct the 12+ year history (as of this writing) of its individual
components, and hopefully make it feel significantly less intimidating to anyone newly exploring. This
is not an exhaustive step by step, just a high level overview of component responsibility.

It’s gonna be a read, buckle in!

Table of Contents

Overview1.
Base Utilities2.

Configurability1.
Loggability2.
Pluggability3.
Inversion4.

LDAP3.
PostgreSQL4.
RabbitMQ / AMQP5.
Web Framework6.
Putting it Together7.
Links8.

Overview

The overarching theme here is separation of concerns. Each component layers more logic on top of its
parent via Class Inheritance. Ruby doesn’t have multiple parent inheritance, but via Ruby’s concept of
Mixins, we can include and re-use arbitrary behaviors across any number of classes.

Using this architecture, we can segment code into logical pieces for maintainability and ease of testing,
separate public release from internal/proprietary business logic, then stack them back together to form
a cohesive whole. This allows us to package and install just what is needed for a given application,
expressing exact dependencies between specific code bases. This can provide the outward impression
of a single application environment – without any monolithic backends or code repetition.

Base Utilities

The following gems are public release, most sponsored by LAIKA. They provide a Ruby ecosystem for

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

1 of 11 5/9/19, 4:53 PM

performing routine duties, and are designed to work either individually or in lock-step with each other.

Almost all of the other software listed throughout this article utilizes these modules one way or
another, usually in the form of a mixin. For detailed documentation, check docs for each individual
module.

In practice, you don’t need to require anything but the laika gem, as it carries all of these utilities, as

well as methods to interact with default behaviors.

Configurability

This allows you to have configurations pushed into a class from a central YAML file. The simplest
possible example:

Once a configuration is loaded, it is chopped up and set to all classes that have been extended with
Configurability. The LAIKA base class has a loader function that defaults to a ~/.laikarc file if present,

then /usr/local/laika/etc/config.yml.

Because of this, once configuration is loaded, more classes can be defined/required, and configuration
doesn’t need to be loaded again. Each class that is configured this way can have its own configuration
key, keeping config for the entire SDK stack in a single place.

Loggability

Centralized logging for instances of Ruby classes. This allows logging levels and destinations to be
defined on a per class basis – also set up via Configurability.

require 'configurability'

class HappyFunBall

 extend Configurability

configurability(:funball) do

 setting :bounce, default: 10

end

end

HappyFunBall.bounce #=> 10

1

2

3

4

5

6

7

8

9

10

11

require 'laika'

LAIKA.load_config

1

2

require 'loggability'

class HappyFunBall

 extend Loggability

 log_as :funball

1

2

3

4

5

6

7

8

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

2 of 11 5/9/19, 4:53 PM

A configuration file that looks like the following would log HappyFunBall at a level of debug to stdout,
using console colors, and everything else would be much more boring:

There are a lot of additional tricks to Loggability, but we usually just spit everything out to stdout, and

run things through multilog (part of the supervise package) to manage rotation and such.

Pluggability

In simple terms, this is a metaprogramming trick that we got tired of re-doing over and over again for
each project. This allows you to make a parent abstract API, then define children (plugins) that
implement the API specified. You can do this in ruby natively, but Pluggability adds automatic discovery
and a well-known API for plugin architecture itself. You can instruct the plugins to be detected
automatically for installed gems, so all the legwork of finding and requiring derivatives is handled for
you.

A good example of this is in Thingfish (described later) – every part of that system is implemented as

pluggable interfaces, so adding new Processor, Metastore, and Filestore behaviors just need to conform
to the API, and can be installed as separate gems. The core Thingfish codebase can remain lean and

mean, and the heavy lifting “I want my files stored in S3” logic can be entirely segregated and
maintained.

You may have noticed a theme in the naming conventions above. These gems are intended to
soon be released as a single gem, the ability suite, that provides all this metaprogramming
goodness (along with other stuff not mentioned).

Inversion

A templating engine that is Ruby idiomatic, easily extensible, and most importantly follows the
Inversion of Control design pattern. This separates areas of concern (again, MVC anyone?), and makes
testing templates easy when using mocks.

def initialize

self.log.debug "I've been instantiated!"

self.log.info "Don't touch the happy fun ball."

end

end

logging:

__default__: warn STDERR

funball: debug (color)

1

2

3

4

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

3 of 11 5/9/19, 4:53 PM

Hi Mahlon.

I have these items to show you.

 * 1

 * 2

 * 3

Template files (and new tags) are automatically discovered using Pluggability, so putting them into a
gem under the data directory templates allows Inversion::Template.load() to find them regardless of

where they are on the system.

Okay, so now that the base behaviors are out of the way, I can give some more concrete examples of
the “layering” I was describing at the beginning of this document. Lets just use a couple of systems in
deep use here at LAIKA as examples, and explain the modules in use that interact with them – and
how they interact with each other.

LDAP

LDAP is the heirarchial tree that stores all things People, Hosts, Network, and a pile of other
miscellanous stuff. The L in LDAP stands for lightweight, and that’s a certain kind of hilarious, because
it’s only an apt comparison against its predecessor, X.500. LDAP is a monster of complexity and weird
legacy behaviors, but it all boils down to a key->value attribute store for entries. It is literally the
original NoSQL.

On the positive side, it is rock solid, astoundingly fast, scalable, and the RFCs that govern it are solid
and immobile. This is boring, borrring stuff. Reliable. Perfect!

Ruby has a couple of raw interfaces to LDAP. They are all varying degrees of awful – it’s as if authors
decided to learn LDAP by releasing a module to the world, marketed as being the most awesome evar
and made with <3. Ugh. Rather than reinvent that wheel, we chose the least awful path, which is ruby-

ldap. It is a C layer implementation that uses the OpenLDAP headers on your system. Unfortunately, it

doesn’t implement some of the advanced stuff (server side pagination, referral following), but given

require 'inversion'

Make a template from a string.

#

template = Inversion::Template.new <<-TMPL

Hi <?attr user ?>.

I have these items to show you.

<?for i in items ?>

* <?attr i ?>

<?end ?>

TMPL

Attach various objects to the template.

#

template.user = "Mahlon"

template.items = [1, 2, 3]

Render it, expanding all the pieces within.

puts template.render

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

4 of 11 5/9/19, 4:53 PM

that it is essentially a C passthrough for Ruby, it does the primary job of talking to LDAP adequately,
and quickly.

It became apparent early on that we needed a higher level abstraction for LDAP interaction – using the
ruby-ldap objects and methods directly gets verbose and ugly pretty fast. There was one player in town
at that time, ActiveLDAP, which was emulating ActiveRecord, a popular SQL ORM.

ActiveLDAP makes a critical architectural misstep, in that it attempts to treat LDAP as a relational
environment, and trips all over itself trying. LDAP is heirarchial, remember? So, an attempt was made
to cater to that core fact, using interface concepts from an ActiveRecord competitor, Sequel, called
Treequel (get it?)

With this, you can create models of LDAP object classes, and have a fairly intuitive 1:1 between LDAP
and Ruby Classes. (Ruby fits nicely into this, as each LDAP objectClass type is essentially a mixin for
valid attributes on the entry.)

Here’s the family tree. Dark grey circles are public but not our code, light grey nodes are
public but written but us, and white nodes are internal/proprietary LAIKA stuff.

Ruby-LDAP Treequel laika-ldap

Module Purpose

Ruby-LDAP Low-level network communication and interface with LDAP.

Treequel LDAP abstractions, modelling and association behaviors.

laika-ldap LAIKA business logic, configuration, model validations.

Here an example of loading my account record up and setting a description, assuming your
configuration file knows the credentials to write to the LDAP master server:

Succinct, huh? No boilerplate required, and all connection configuration is pushed to a separate YAML
file.

PostgreSQL

I’m not going to spend a lot of time in this one, because it’s largely identical to LDAP in terms of
usage, conceptual layout, etc.

require 'laika'

require 'laika/ldap'

LAIKA.load_config

mahlon = LAIKA::Account['mahlon']

mahlon.description = "He just double clicks around"

mahlon.save

1

2

3

4

5

6

7

8

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

5 of 11 5/9/19, 4:53 PM

pg Sequel laika-db

Module Purpose

pg Low-level network communication and interface with PostgreSQL.

Sequel
Database ORM abstractions, modelling and association behaviors. This library is really
amazing, and the author is exceptionally responsive.

laika-db LAIKA business logic, configuration, model validations.

Here an example of loading a LAIKApedia wiki page, and programmatically changing the owner.

The similarity in usage with LDAP here can’t be understated – it’s the same interface to wildly differing
systems. Certainly things like searching are going to be different, but the core setups and usage all
parallel each other. Nice? Nice.

RabbitMQ / AMQP

Once machine messaging reached critical mass at the studio, and RabbitMQ was the clear winner
between the various available backends, some time was spent evaluating the higher-level AMQP
options for Ruby. (It was definitely more promising than the LDAP landscape at the time.)

A popular one was JRuby only. Another had a heavy and fragile dependency we didn’t want to
introduce everywhere. We thought we had found a decent one called “Sneakers”, and started moving
forward with it – but quickly hit some walls after doing anything outside of the default setup. Sneakers
just didn’t expose enough AMQP behaviors to the user, instead catering to only the most common use
cases. If you wanted to do something outside of what Sneaker supported, you were out of luck. We
began writing patches to support these features under Sneakers, but architectural decisions with the
library made us realize that it would take significantly less time to write our own, called Symphony. (It
should be noted that since that time, Sneakers has improved considerably, but still doesn’t support
some behaviors we’ve come to appreciate.)

Symphony has solid default behaviors, understands server-side created queues vs client created,
cleans up after itself with Rabbit, and most importantly, doesn’t hide Rabbit/AMQP concepts from the
developer. Simple and common defaults are great, but if you let Rabbit do the logical heavy lifting
(offline retry, policies, dead letter queues, shovelling, etc) – Symphony just gets out of your way.. It
also handles content negotiation automatically, so you can publish and receive ruby objects directly,

require 'laika'

require 'laika/db'

require 'laika/pedia' # Where the wiki models are defined

LAIKA.load_config

page = LAIKA::Pedia::Page['/it/isg/some-weirdo-page']

page.owner = "mahlon"

page.save

1

2

3

4

5

6

7

8

9

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

6 of 11 5/9/19, 4:53 PM

and the serialization is handled transparently.

A symphony worker is discovered via Pluggability, so you can include a worker in any other gem, under
the gem data directory at symphony/tasks.

bunny Symphony laika-symphony

Module Purpose

bunny Low-level network communication and interface with RabbitMQ.

Symphony Higher level abstractions for job workers.

laika-
symphony

Symphony actually uses Pluggability to find qualified workers, which usually live in
the repositories that require them. This library holds a singleton that allows easy
message publishing and queue visualization.

Here’s a quick example worker, that simply accepts an event called trigger, and publishes a new

message back to the exchange with a key of notify. It’ll automatically create a queue called example

and hook up the event subscription from the configured exchange:

The run method is a blocking call, waiting for new events. Fire up multiples of these across any number

of machines, and you’ve got a immediate distributed work crew. When the last one exits, the queue is
automatically cleaned up on the server.

Web Framework

This is a larger backstory, but I’ll make it as brief as I can. There’s a glut of frameworks out there, why
on earth would anyone make another? Both myself and my counterpart Michael Granger had a long
history with serving web content, and had both written multiple frameworks over time. We’ve seen first
hand mod_perl environments that served tens of millions of hits a day before “facebook scale” was a

require 'laika'

require 'laika/symphony'

require 'symphony/routing'

class Example < Symphony::Task

 include Symphony::Routing

 on 'trigger' do |payload, metadata|

LAIKA::Symphony.instance.send_message('notify', "I got an event and presumably am leaping into action!"

return true

end

end

LAIKA.load_config

Example.run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

7 of 11 5/9/19, 4:53 PM

thing, and in the mid 2000s, Michael took it upon himself to translate all we learned from LiveJournal
into a mod_ruby framework called Arrow.

Arrow took a bunch of what we were missing in LiveJournal environments and solidified that into the
Ruby ecosystem. Over time however, the monolithic web application gave way to a desire for smaller,
more focused handlers for specific URI paths. Microservices? Call it what you want. The idea was to
carve up your URI space into individual applications, and not be locked down into any one particular
technology.

So we set about to find a backend platform that supported those ideals. Rails was out of the question.
Zed Shaw had just evolved his Ragel-based HTTP state machine into a new, non-ruby-centric backend
called “Mongrel2” – it’s design felt perfect for what we were searching for.

Small C-based server that performs only the specific task required of it and nothing more
The Ragel HTTP parser, for a proven track record of safety and security
ZMQ for horizontal scalability
tnetstring request/response cycle for easy handler handoff and communication
Completely language agnostic – if a specfic portion of the URI path requires a different tool in the
toolbox, it should be a relatively simple task to integrate.

Mongrel2 is not under heavy development, largely because it doesn’t need to be. It is basically an
HTTP parser that wraps a request, converts it to a tnetstring, and sends it to a ZMQ socket. That’s it.
What happens afterward is all in the domain of the handler – accepting a request, and providing a
response.

LAIKA the company was named after a well-known dog cosmonaut. A lesser known fact – Laika wasn’t
the only one. There was also a dog named Strelka, which means “little arrow”. Unlike Laika, Strelka
returned alive. The coincidental link between the Arrow Web Framework and the company that was
sponsoring this development was too good to pass up, and a Mongrel2 specific framework was born.

Strelka exposes all of it’s functionality via Pluggability (shocker), down to the request/response. Need a
new authentication backend? Plug in. Log requests to elastic search? Plug in. Here’s a small portion of
what Strelka provides:

Sinatra style routing DSL for REST frameworks
Global authentication defaults with per-route overrides
Inversion templating integration, with look and feel layout wrapping
Automatic content negotiations - the same URI can return different results based on HTTP Accept

headers, the way nature intended
Strict parameter validations with global definitions and per-route overrides, with automatic
typecasting
Easy hooks for extending it beyond what we’ve already thought of, and plugins can describe
ordering dependencies

Ruby-Mongrel2 Strelka laika-app random handler

Module Purpose

Ruby-
Mongrel2

ZMQ and tnetstring parsing layer to the Mongrel2 C daemon, which beautifully
handles all the HTTP parsing gruntwork

Strelka
Takes a raw Mongrel2 request object and passes it through a bunch of friendly
interfaces to produce a response, following a ruby idiomatic path.

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

8 of 11 5/9/19, 4:53 PM

Module Purpose

laika-app
A base Strelka handler that includes the base plugins we’ll always be using, the
look and feel, LDAP and PG automatic reconnection code, and LAIKA specific
plugins. Essentially all the Strelka handler boilerplate without any logic.

random
handler

Inheriting from laika-app, this represents a handler that contains the core business

logic for a collection of URIs.

Inheriting from laika-app provides LAIKA template pathing and content negotiation. Here’s a Hello

World handler that responds with the regular theme if viewed in a browser, and with a structured
payload with the proper Accept header:

Just like the Symphony event handlers, starting more of these up (on the same hardware, or other
machines across the network) will evenly distribute requests automatically.

Putting it Together

Ok, with the primary components behind us, here’s the dependency graph for a real “random handler”

require 'laika'

require 'laika/app'

An example web handler

class Example < LAIKA::App

ID = 'example'

 layout 'layout.tmpl' # Main look-and-feel template

 default_type 'text/html'

 get '/' do |request|

 response = request.response

 response.for(:html) do

"Hello, world!"

end

 response.for(:json, :yaml) do

{ "hello" => "world" }

end

return response

end

end

LAIKA.load_config

Example.run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

9 of 11 5/9/19, 4:53 PM

from above. This handler is called laika-file, and it’s responsible for arbitrary file storage and retrieval

for the environment. It inherits from a project called Thingfish, that’s a framework using Strelka for
storing, filtering, extracting metadata, and fetching files over a REST interface. Like the other stuff,
laika-file adds specific LAIKA flavoring to it, teaching it our authentication methods and database

backends, then emits events to AMQP when files are stored (for asynchronous processing.) Notes on its
architecture can be found here.

Configurability

LoggabilityPluggability

Inversion Ruby-Mongrel2

Strelka

Thingfish

laika-app

laika-db

laika-authprovider

Ruby-LDAP

Treequel

laika-ldap

pg

Sequel

bunny

Symphony

laika-symphony

laika-file

laika-file advertises itself to Mongrel2 under the /file URI path, alongside a good number of other

handlers. To end users, it appears as a single environment, and all elements of it are configured in a
single place.

Hopefully this has helped demonstrate the ecosystem, and the “small parts” philosophy that drives it.

Links

Configurability
Loggability
Pluggability
Inversion
Bunny
Symphony
Ruby-Mongrel2
Strelka
Thingfish
Ruby-LDAP
Sequel
Treequel

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

10 of 11 5/9/19, 4:53 PM

pg
laika-ldap
laika-db
laika-app
laika-symphony
laika-file
laika-authprovider

In addition, machine generated documentation for the SDK can be found here.

normal

LAIKA :: IT Ruby SDK Family Tree https://app.laika.com/intranet/it/RubyFamilyTree

11 of 11 5/9/19, 4:53 PM

